多知识点融合嵌入的深度知识追踪模型
知识追踪任务是根据学生历史答题记录追踪学生知识状态的变化,预测学生未来的答题情况.近年来,基于注意力机制的知识追踪模型在灵活性和预测性能上都明显优于传统知识追踪模型.但是现有深度模型大多只考虑了单一知识点题目的情况,无法直接处理多知识点题目,而智能教育系统中存在着大量的多知识点题目.此外,如何提高可解释性是深度知识追踪模型的关键挑战之一.为了解决这些问题,提出一种多知识点融合嵌入的深度知识追踪模型.所提模型考虑涉及多知识点的题目中知识点之间的关系,提出两种新颖的多知识点嵌入方式,并且结合教育心理学模型和遗忘因素提升预测性能和可解释性.实验表明所提模型在大规模真实数据集上预测性能上优于现有模型,并验证各个模块的有效性.
教育数据挖掘、知识追踪、注意力机制、深度神经网络
34
TP18(自动化基础理论)
国家自然科学基金62137001
2023-11-10(万方平台首次上网日期,不代表论文的发表时间)
共17页
5126-5142