逆向强化学习研究综述
逆向强化学习(inverse reinforcement learning,IRL)也称为逆向最优控制(inverse optimal control,IOC),是强化学习和模仿学习领域的一种重要研究方法,该方法通过专家样本求解奖赏函数,并根据所得奖赏函数求解最优策略,以达到模仿专家策略的目的.近年来,逆向强化学习在模仿学习领域取得了丰富的研究成果,已广泛应用于汽车导航、路径推荐和机器人最优控制等问题中.首先介绍逆向强化学习理论基础,然后从奖赏函数构建方式出发,讨论分析基于线性奖赏函数和非线性奖赏函数的逆向强化学习算法,包括最大边际逆向强化学习算法、最大熵逆向强化学习算法、最大熵深度逆向强化学习算法和生成对抗模仿学习等.随后从逆向强化学习领域的前沿研究方向进行综述,比较和分析该领域代表性算法,包括状态动作信息不完全逆向强化学习、多智能体逆向强化学习、示范样本非最优逆向强化学习和指导逆向强化学习等.最后总结分析当前存在的关键问题,并从理论和应用方面探讨未来的发展方向.
逆向强化学习、模仿学习、生成对抗模仿学习、逆向最优控制、强化学习
34
TP18(自动化基础理论)
国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;江苏省高等学校自然科学研究重大项目;江苏省高等学校自然科学研究重大项目;吉林大学符号计算与知识工程教育部重点实验室资助项目;吉林大学符号计算与知识工程教育部重点实验室资助项目;苏州市应用基础研究计划;江苏高校优势学科建设工程
2023-10-19(万方平台首次上网日期,不代表论文的发表时间)
共32页
4772-4803