期刊专题

10.13328/j.cnki.jos.006511

基于实例加权和双分类器的稳定学习算法

引用
稳定学习的目标是利用单一的训练数据构造一个鲁棒的预测模型,使其可以对任意与训练数据具有相似分布的测试数据进行精准的分类.为了在未知分布的测试数据上实现精准预测,已有的稳定学习算法致力于去除特征与类标签之间的虚假相关关系.然而,这些算法只能削弱特征与类标签之间部分虚假相关关系并不能完全消除虚假相关关系;此外,这些算法在构建预测模型时可能导致过拟合问题.为此,提出一种基于实例加权和双分类器的稳定学习算法,所提算法通过联合优化实例权重和双分类器来学习一个鲁棒的预测模型.具体而言,所提算法从全局角度平衡混杂因子对实例进行加权来去除特征与类标签之间的虚假相关关系,从而更好地评估每个特征对分类的作用.为了完全消除数据中部分不相关特征与类标签之间的虚假相关关系以及弱化不相关特征对实例加权过程的干扰,所提算法在实例加权之前先进行特征选择筛除部分不相关特征.为了进一步提高模型的泛化能力,所提算法在训练预测模型时构建两个分类器,通过最小化两个分类器的参数差异来学习一个较优的分类界面.在合成数据集和真实数据集上的实验结果表明了所提方法的有效性.

实例加权、特征选择、分布变化、稳定学习

34

TP18(自动化基础理论)

国家重点研发计划;国家自然科学基金;智能信息处理山西省重点实验室开放课题

2023-07-17(万方平台首次上网日期,不代表论文的发表时间)

共20页

3206-3225

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

34

2023,34(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn