联邦学习贡献评估综述
数据不动的联邦学习框架是多个数据持有方合作训练机器学习模型的新范式.多个数据持有方参与联邦学习时的贡献评估是联邦学习的核心问题之一.参与方贡献评估需要兼顾有效性、公平性和合理性等要素,在理论方法与实际应用中均面临多项挑战.贡献评估首先需要明确如何度量数据价值,然而数据估值存在主观性与依赖于实际任务场景的特点,如何设计有效、可靠并对恶意数据鲁棒的数据估值指标是第一大挑战.其次,联邦学习合作中的参与方贡献评估是经典的合作博弈问题,如何制定公平合理的参与方贡献评估方案,实现参与方一致认可的博弈平衡是第二大挑战.最后,参与方贡献评估往往计算复杂度高,同时,联邦学习中围绕模型的数据估值时间开销大,因此,在实践中如何设计高效且准确的近似算法是第三大挑战.近年来,为了有效地解决上述挑战,学术界对联邦学习中的贡献评估问题展开了广泛的研究.首先,简要介绍联邦学习与参与方贡献评估的背景知识;然后,综述数据估值指标、参与方贡献评估方案和相关优化技术;最后,讨论了联邦学习贡献评估仍面临的挑战并展望未来研究的发展方向.
贡献评估、数据估值、联邦学习、激励机制、合作博弈
34
TP18(自动化基础理论)
国家自然科学基金;北京国家信息研究中心资助项目
2023-03-16(万方平台首次上网日期,不代表论文的发表时间)
共25页
1168-1192