期刊专题

10.13328/j.cnki.jos.006712

融合全局和局部特征的下一个兴趣点推荐方法

引用
随着海量移动数据的积累,下一个兴趣点推荐已成为基于位置的社交网络中的一项重要任务.目前,主流方法倾向于从用户近期的签到序列中捕捉局部动态偏好,但忽略了历史移动数据蕴含的全局静态信息,从而阻碍了对用户偏好的进一步挖掘,影响了推荐的准确性.为此,提出一种基于全局和局部特征融合的下一个兴趣点推荐方法.该方法利用签到序列中的顺序依赖和全局静态信息中用户与兴趣点之间、连续签到之间隐藏的关联关系建模用户移动行为.首先,引入两类全局静态信息,即User-POI关联路径和POI-POI关联路径,学习用户的全局静态偏好和连续签到之间的全局依赖关系.具体地,利用交互数据以及地理信息构建异构信息网络,设计关联关系表示学习方法,利用相关度引导的路径采样策略以及层级注意力机制获取全局静态特征.然后,基于两类全局静态特征更新签到序列中的兴趣点表示,并采用位置与时间间隔感知的自注意力机制来捕捉用户签到序列中签到之间的局部顺序依赖,进而评估用户访问兴趣点概率,实现下一个兴趣点推荐.最后,在两个真实数据集上进行了实验比较与分析,验证了所提方法能够有效提升下一个兴趣点推荐的准确性.此外,案例分析表明,建模显式路径有助于提供可解释的推荐结果.

兴趣点推荐、注意力机制、顺序依赖、用户偏好、可解释

34

TP311(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金;基本科研业务费

2023-02-15(万方平台首次上网日期,不代表论文的发表时间)

共16页

786-801

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

34

2023,34(2)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn