基于深度学习的源代码缺陷检测研究综述
源代码缺陷检测是判别程序代码中是否存在非预期行为的过程,广泛应用于软件测试、软件维护等软件工程任务,对软件的功能保障与应用安全方面具有至关重要的作用.传统的缺陷检测研究以程序分析为基础,通常需要很强的领域知识与复杂的计算规则,面临状态爆炸问题,导致检测性能有限,在误报漏报率上都有较大提高空间.近年来,开源社区的蓬勃发展积累了以开源代码为核心的海量数据,在此背景下,利用深度学习的特征学习能力能够自动学习语义丰富的代码表示,从而为缺陷检测提供一种新的途径.搜集了该领域最新的高水平论文,从缺陷代码数据集与深度学习缺陷检测模型两方面系统地对当前方法进行了归纳与阐述.最后对该领域研究所面临的主要挑战进行总结,并展望了未来可能的研究重点.
深度学习、缺陷检测、代码表征
34
TP311(计算技术、计算机技术)
2023-02-15(万方平台首次上网日期,不代表论文的发表时间)
共30页
625-654