期刊专题

10.13328/j.cnki.jos.006305

动态迁移实体块信息的跨领域中文实体识别模型

引用
由于中文文本之间没有分隔符,难以识别中文命名实体的边界.此外,在垂直领域中难以获取充足的标记完整的语料,例如医疗领域和金融领域等垂直领域.为解决上述不足,提出一种动态迁移实体块信息的跨领域中文实体识别模型(TES-NER),将跨领域共享的实体块信息(entity span)通过基于门机制(gate mechanism)的动态融合层,从语料充足的通用领域(源领域)动态迁移到垂直领域(目标领域)上的中文命名实体模型,其中,实体块信息用于表示中文命名实体的范围.TES-NER模型首先通过双向长短期记忆神经网络(BiLSTM)和全连接网络(FCN)构建跨领域共享实体块识别模块,用于识别跨领域共享的实体块信息以确定中文命名实体的边界;然后,通过独立的基于字的双向长短期记忆神经网络和条件随机场(BiLSTM-CRF)构建中文命名实体识别模块,用于识别领域指定的中文命名实体;最后构建动态融合层,将实体块识别模块抽取得到的跨领域共享实体块信息通过门机制动态决定迁移到领域指定的命名实体识别模型上的量.设置通用领域(源领域)数据集为标记语料充足的新闻领域数据集(MSRA),垂直领域(目标领域)数据集为混合领域(OntoNotes 5.0)、金融领域(Resume)和医学领域(CCKS 2017)这3个数据集,其中,混合领域数据集(OntoNotes 5.0)是融合了 6个不同垂直领域的数据集.实验结果表明,提出的模型在OntoNotes 5.0、Resume和CCKS 2017这3个垂直领域数据集上的F1值相比于双向长短期记忆和条件随机场模型(BiLSTM-CRF)分别高出2.18%、1.68%和0.99%.

命名实体识别、迁移学习、跨领域、动态融合、双向长短期记忆神经网络

33

TP391(计算技术、计算机技术)

国家重点研发计划2017YFB1002303

2022-10-31(万方平台首次上网日期,不代表论文的发表时间)

共17页

3776-3792

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

33

2022,33(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn