双加权多视角子空间聚类算法
多视角子空间聚类方法为高维多视角数据的聚类问题提供了大量的解决方案.但是现有的子空间方法仍不能很好地解决以下两个问题:(1)如何利用不同视角的差异性进行学习获得一个优质的共享系数矩阵;(2)如何增强共享系数矩阵的低秩性.针对以上问题,提出了一种有效的双加权多视角子空间聚类算法.该算法首先通过子空间自表达学习到每个视角的系数矩阵,然后采用自适应权重策略构建一个共享系数矩阵,最后利用加权核范数逼近系数矩阵的秩,使得系数矩阵的表示更加低秩,进而取得更好的聚类结果.采用增广拉格朗日乘子法来优化目标函数,并在6个广泛使用的数据集上进行实验,验证了该算法的优越性.
多视角子空间聚类;系数矩阵;权重;加权核范数;低秩
33
TP18(自动化基础理论)
国家自然科学基金61573273
2022-03-02(万方平台首次上网日期,不代表论文的发表时间)
共13页
585-597