期刊专题

10.13328/j.cnki.jos.006207

基于多任务预训练的AMR文本生成研究

引用
抽象语义表示(abstract meaning representation,简称AMR)文本生成的任务是给定AMR图,生成与其语义一致的文本.相关工作表明,人工标注语料的规模大小直接影响了AMR文本生成的性能.为了降低对人工标注语料的依赖,提出了基于多任务预训练的AMR文本生成方法.特别地,基于大规模自动标注AMR语料,提出与AMR文本生成任务相关的3个预训练任务,分别是AMR降噪自编码、句子降噪自编码以及AMR文本生成任务本身.此外,基于预训练模型,在朴素微调方法的基础上,进一步提出了基于多任务训练的微调方法,使得最终模型不仅适用于AMR文本生成,同时还适用于预训练任务.基于两个AMR标准数据集的实验结果表明:使用0.39M自动标注数据,提出的预训练方法能够大幅度提高AMR文本生成的性能,在AMR2.0和AMR3.0上分别提高了12.27和7.57个BLEU值,性能分别达到40.30和38.97.其中,在AMR2.0上的性能为目前报告的最优值,在AMR3.0上的性能为目前为止首次报告的性能.

AMR;AMR文本生成;多任务预训练;序列到序列模型

32

TP18(自动化基础理论)

国家重点研发计划;国家自然科学基金

2021-10-15(万方平台首次上网日期,不代表论文的发表时间)

共15页

3036-3050

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

32

2021,32(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn