期刊专题

10.13328/j.cnki.jos.005983

融合多种特征的恶意URL检测方法

引用
随着Web应用的日益广泛,Web浏览过程中,恶意网页对用户造成的危害日趋严重.恶意URL是指其所对应的网页中含有对用户造成危害的恶意代码,会利用浏览器或插件存在的漏洞攻击用户,导致浏览器自动下载恶意软件.基于对大量存活恶意URL特征的统计分析,并重点结合了恶意URL的重定向跳转、客户端环境探测等逃避检测特征,从页面内容、JavaScript函数参数和Web会话流程这3个方面设计了 25个特征,提出了基于多特征融合和机器学习的恶意URL检测方法——HADMW.测试结果表明:该方法取得了 96.2%的精确率和94.6%的召回率,能够有效地检测恶意URL.与开源项目以及安全软件的检测结果相比,HADMW取得了更好的效果.

Web安全;恶意URL检测;多特征融合;机器学习

32

TP393(计算技术、计算机技术)

国家自然科学基金;网络犯罪侦查湖南省普通高校重点实验室开放课题

2021-09-24(万方平台首次上网日期,不代表论文的发表时间)

共19页

2916-2934

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

32

2021,32(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn