期刊专题

10.13328/j.cnki.jos.006418

一种协同过滤式零次学习方法

引用
深度学习算法在很多有监督学习任务上达到了令人满意的结果,但其依赖于大量标注样本,并且使用特定类别训练的分类器,只能对这些类别进行分类.零次学习希望计算机像人类一样,能够结合历史经验与知识进行推理,无需使用大量新类别样本训练,便可达到识别新类别的效果.发现了零次学习任务存在"冷启动"以及矩阵稀疏两个特点,这些特点在推荐任务中同样存在.受推荐任务启发,将零次图像分类任务建模为矩阵填充问题,借鉴推荐领域中协同过滤算法,将稀疏的样本标签矩阵视为非稀疏的视觉特征矩阵和类别特征矩阵的内积结果,进而实现对新类别样本的分类预测.此外,构建了基于类间语义关联的语义图结构,使用图神经网络进行已知类别和新类别之间的知识迁移,以较小代价为类别学得准确的语义特征.在3个经典零次学习数据集上分别进行传统零次学习和广义零次学习实验,实验结果表明:提出的协同过滤式零次学习方法能够有效提升分类精度,且训练代价较小.

零次学习;协同过滤;矩阵填充;图神经网络

32

TP183(自动化基础理论)

国家自然科学基金;吉林省自然科学基金;吉林省科技厅重点研发项目

2021-09-24(万方平台首次上网日期,不代表论文的发表时间)

共15页

2801-2815

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

32

2021,32(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn