面向优先车辆感知的交通灯优化控制方法
智慧交通灯控制能够有效地改善道路交通的秩序和效率.在城市交通网络中,具有紧急任务的特殊车辆对于通行效率的要求更高.目前已有的智慧交通灯控制算法通常对路网中的所有车辆一视同仁,没有考虑到特殊车辆的优先性;而传统的控制特殊车辆优先通行的方法基本上都是采用信号抢占的方式,对普通车辆的通行干扰过大.为此,提出一种面向优先车辆感知的交通灯优化控制方法,通过与道路环境的不断交互来学习交通灯控制策略,在设置状态和奖励函数时增加特殊车辆的权重,并利用Double DQN和Dueling DQN来提升模型表现,最终在城市交通模拟器SUMO中进行仿真实验.在训练趋于稳定之后,与固定时长控制方法的对比实验结果显示,该方法能够将特殊车辆与普通车辆的平均等待时间分别缩短68%与22%左右;与不考虑优先级的方法相比,特殊车辆的平均等待时间也有35%左右的优化.验证了该方法能够在提高车辆通行效率的同时,体现出对特殊车辆的优先处理.同时,实验也表明该方法能够扩展应用于多路口场景中.
智慧交通;交通信号控制;强化学习;深度学习;车辆优先级
32
TP311(计算技术、计算机技术)
国家重点研发计划;国家自然科学基金;华东师范大学优秀博士生学术创新能力提升计划
2021-08-31(万方平台首次上网日期,不代表论文的发表时间)
共14页
2425-2438