期刊专题

10.13328/j.cnki.jos.006190

基于强化学习的温度感知多核任务调度

引用
随着计算机中内核数量的增多,温度感知的多核任务调度算法成为计算机系统中的一个研究热点.近年来,机器学习在各个领域展现出巨大的潜力,彳艮多基于机器学习的系统温度管理研究工作应运而生.其中,强化学习因其较强的自适应性,被广泛地运用于温度感知的任务调度算法中.然而,目前基于强化学习的温度感知任务调度算法系统建模不够准确,很难做到温度、性能和复杂度的较好权衡.因此,提出一种基于强化学习的多核温度感知调度算法——ReLeTA.在该算法中提出了更全面的状态建模方式和更加有效的奖励函数,从而帮助系统进一步降低温度.实验部分通过3个不同的真实计算机平台验证该方法,实验结果表明了该方法的有效性以及可扩展性,与现有方法相比,ReLeTA可以更好地控制系统温度.

温度感知;多核系统;强化学习;Q-Learning

32

TP316(计算技术、计算机技术)

国家自然科学基金61902341

2021-08-31(万方平台首次上网日期,不代表论文的发表时间)

共17页

2408-2424

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

32

2021,32(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn