期刊专题

10.13328/j.cnki.jos.006002

异构HPL算法中CPU端高性能BLAS库优化

引用
异构HPL(high-performance Linpack)效率的提高需要充分发挥加速部件和通用CPU计算能力,加速部件集成了更多的计算核心,负责主要的计算,通用CPU负责任务调度的同时也参与计算.在合理划分任务、平衡负载的前提下,优化CPU端计算性能对整体效率的提升尤为重要.针对具体平台体系结构特点对BLAS(basic linear algebra subprograms)函数进行优化往往可以更加充分地利用通用CPU计算能力,提高系统整体效率.BLIS(BLAS-like library instantiation software)算法库是开源的BLAS函数框架,具有易开发、易移植和模块化等优点.基于异构系统平台体系结构以及HPL算法特点,充分利用三级缓存、向量化指令和多线程并行等技术手段优化CPU端调用的各级BLAS函数,应用auto-tuning技术优化矩阵分块参数,从而形成了HygonBLIS算法库.与MKL相比,在异构环境下,HPL算法整体性能提高了11.8%.

BLAS;遗传算法auto-tuning;向量化指令;数据预取;多线程并行

32

TP303(计算技术、计算机技术)

2021-08-31(万方平台首次上网日期,不代表论文的发表时间)

共18页

2289-2306

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

32

2021,32(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn