10.3969/j.issn.1000-9825.2020.04.016
面向推荐系统的图卷积网络
图卷积网络是一种针对图信号的深度学习模型,由于具有强大的特征表征能力得到了广泛应用.推荐系统可视为图信号的链接预测问题,因此近年来提出了使用图卷积网络解决推荐问题的方法.推荐系统中存在用户与商品间的异质顶点交互和用户(或商品)内部的同质顶点交互,然而,现有方法中的图卷积操作要么仅在异质顶点间进行,要么仅在同质顶点间进行,留下了提升此类推荐系统性能的空间.考虑到这一问题,提出了一种新的基于图卷积网络的推荐算法,使用两组图卷积操作同时利用两种不同的交互信息,其中异质顶点卷积用于挖掘交互图谱域中存在的连接信息,同质顶点卷积用于使相似顶点具有相近表示.实验结果表明,该算法比现有算法具有更优的精度.
图卷积网络、图信号、几何深度学习、神经网络、推荐系统
31
TP181(自动化基础理论)
国家自然科学基金61672281,61732006
2020-06-30(万方平台首次上网日期,不代表论文的发表时间)
共12页
1101-1112