期刊专题

10.3969/j.issn.1000-9825.2020.04.013

基于规则推理网络的分类模型

引用
为了缓解神经网络的“黑盒子”机制引起的算法可解释性低的问题,基于使用证据推理算法的置信规则库推理方法(以下简称RIMER)提出了一个规则推理网络模型.该模型通过RIMER中的置信规则和推理机制提高网络的可解释性.首先证明了基于证据推理的推理函数是可偏导的,保证了算法的可行性;然后,给出了规则推理网络的网络框架和学习算法,利用RIMER中的推理过程作为规则推理网络的前馈过程,以保证网络的可解释性;使用梯度下降法调整规则库中的参数以建立更合理的置信规则库,为了降低学习复杂度,提出了“伪梯度”的概念;最后,通过分类对比实验,分析了所提算法在精确度和可解释性上的优势.实验结果表明,当训练数据集规模较小时,规则推理网络的表现良好,当训练数据规模扩大时,规则推理网络也能达到令人满意的结果.

规则推理、RIMER、可解释性网络、机器学习、不确定性分类

31

TP181(自动化基础理论)

国家自然科学基金61772250,U1936109,61672127

2020-06-30(万方平台首次上网日期,不代表论文的发表时间)

共16页

1063-1078

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

31

2020,31(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn