期刊专题

10.3969/j.issn.1000-9825.2020.04.007

基于选择聚类集成的相似流形学习算法

引用
流形学习是当今最重要的研究方向之一.约简维度的选择影响着流形学习方法的性能.当约简维度恰好是本征维度时,更容易发现原始数据的内在性质.然而,本征维度估计仍然是流形学习的一个研究难点.在此基础上,提出了一种新的无监督方法,即基于选择聚类集成的相似流形学习(SML-SCE)算法,避免了对本征维度的估计,并且性能表现良好.SML-SCE利用改进的层次平衡K-means(MBKHK)方法生成具有代表性的锚点,高效地构造相似度矩阵.随后计算得到了多个不同维度下的相似低维嵌入,这些低维嵌入是对原始数据的不同表示,而且不同低维嵌入之间的多样性有利于集成学习.因此,SML-SCE采用选择性聚类集成方法作为结合策略.对于通过K-means聚类得到的相似低维嵌入的聚类结果,采用聚类间的归一化互信息(NMI)作为权重的衡量标准.最后,舍弃权重较低的聚类,采用基于权重的选择性投票方案,得到最终的聚类结果.在多个数据集的大量实验结果表明了该方法的有效性.

相似流形学习、流形学习、集成学习、维度约简

31

TP181(自动化基础理论)

国家重点研发计划;国家自然科学基金

2020-06-30(万方平台首次上网日期,不代表论文的发表时间)

共11页

991-1001

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

31

2020,31(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn