两两比较模型的Why-not问题解释及排序
由于数据缺失,数据库用户通常无法获得查询结果中的预期答案.它被称为“Why-not问题”,即“为什么预期的元组不会出现在结果中”.现有的方法通过列举可能的元组值来解释Why-not问题.枚举所给出解释的数量往往太大,无法由用户探索.完整性约束,如函数依赖,被用来排除不合格的解释.然而,许多属性在简化后解释中仅仅表示为变量,用户可能仍然无法理解.由于数据稀疏性,许多不合理的解释也会被推荐给用户.提出通过研究元组间两两比较关系,从而对Why-not问题的解释进行排序的方法.首先,重新定义为什么Why-not问题解释的形式没有变量,以便于用户理解;其次,对元组中的相等/不相等关系进行表示,提出在{0,1}表示的元组对的基础上学习统计模型,从而解决直接在原始数据上学习所带来的稀疏性问题,许多模型可以被用来推断概率,包括统计分布、分类和回归;最后,根据推断的概率对解释进行评价和排序.实验结果证明:利用统计、分类和回归方法计算两两关系概率分布的方法,可以为用户寻找Why-not问题的解释并返回较为高质量的解释.
数据质量、数据清洗、条件函数依赖、缺失结果解释、解释排序
30
TP311(计算技术、计算机技术)
国家重点研发计划2016YFB1001101;国家自然科学基金61572272,71690231
2019-04-24(万方平台首次上网日期,不代表论文的发表时间)
共28页
620-647