期刊专题

10.13328/j.cnki.jos.005691

劣质数据上代价敏感决策树的建立

引用
代价敏感决策树是以最小化误分类代价和测试代价为目标的一种决策树.目前,随着数据量急剧增长,劣质数据的出现也愈发频繁.在建立代价敏感决策树时,训练数据集中的劣质数据会对分裂属性的选择和决策树结点的划分造成一定的影响.因此在进行分类任务前,需要提前对数据进行劣质数据清洗.然而在实际应用中,由于数据清洗工作所需要的时间和金钱代价往往很高,许多用户给出了自己可接受的数据清洗代价最大值,并要求将数据清洗的代价控制在这一阈值内.因此除了误分类代价和测试代价以外,劣质数据的清洗代价也是代价敏感决策树建立过程中的一个重要因素.然而,现有代价敏感决策树建立的相关研究没有考虑数据质量问题.为了弥补这一空缺,着眼于研究劣质数据上代价敏感决策树的建立问题.针对该问题,提出了3种融合数据清洗算法的代价敏感决策树建立方法,并通过实验证明了所提出方法的有效性.

代价敏感决策树、劣质数据、数据清洗、误分类代价、测试代价

30

TP311(计算技术、计算机技术)

国家自然科学基金U1509216,61472099;国家科技支撑计划2015BAH10F01

2019-04-24(万方平台首次上网日期,不代表论文的发表时间)

共16页

604-619

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

30

2019,30(3)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn