期刊专题

10.13328/j.cnki.jos.005394

特征选择稳定性研究综述

引用
随着大数据的发展和机器学习的广泛应用,各行业的数据量呈现大规模的增长,高维性是这些数据的重要特点,采用特征选择对高维数据进行降维是一种预处理方法.特征选择稳定性是其中重要的研究内容,它是指特征选择方法对训练样本的微小扰动具有一定鲁棒性.提高特征选择稳定性有助于发现相关特征,增强特征可信度,进一步降低开销.在回顾现有特征选择稳定性提升方法的基础上对其进行分类,分析比较各类方法的特点和适用范围,总结特征选择稳定性中的相关评估工作,并通过实验剖析其中稳定性度量指标的性能,进而对比4种集成方法的效用.最后讨论当前工作的局限性,指出未来的研究方向.

高维数据、特征选择、稳定性、稳定性指标、集成选择、演化算法

29

TP391(计算技术、计算机技术)

国家自然科学基金61371196;中国博士后科学基金201003797

2018-10-10(万方平台首次上网日期,不代表论文的发表时间)

共21页

2559-2579

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

29

2018,29(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn