期刊专题

10.13328/j.cnki.jos.005531

一种基于关联分析与N-Gram的错误参数检测方法

引用
为了检测软件系统中存在错误参数的函数调用,提出了一种基于关联分析和N-Gram语言模型的静态检测方法(ANiaD).基于海量开源代码,构建了关联分析模型以挖掘参数间存在的强关联规则.针对参数间存在强关联规则的函数调用构建N-Gram语言模型.基于训练过的N-Gram模型,计算给定函数调用语句正确的概率.低概率的函数调用被报告为异常函数调用.基于10个开源Java项目对该方法进行实验验证.实验结果表明,该方法检测的查准率约43.40%,显著高于现有的基于相似度的检测方法(查准率25%).

参数、异常检测、缺陷、语言模型、关联分析

29

TP311(计算技术、计算机技术)

国家重点研发计划2016YFB1000801;国家自然科学基金61472034,61772071,61690205

2018-09-28(万方平台首次上网日期,不代表论文的发表时间)

共15页

2243-2257

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

29

2018,29(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn