期刊专题

10.13328/j.cnki.jos.004737

部件级表观模型的目标跟踪方法

引用
因受遮挡、运动模糊、剧烈形变等因素的影响,稳定且准确的目标跟踪是当前计算机视觉研究领域重要挑战之一.首先采用中层视觉线索的超像素描述目标/背景的部件,以部件颜色直方图作为其特征,并通过聚类部件库的特征集构建初始表现模型,部件表达的局部性和灵活性使该模型能够准确描述目标/背景;然后,利用贝叶斯滤波模型计算目标框的初始状态,并提出相似物体干扰的检测和处理算法以避免跟踪漂移,得到更健壮的结果;最后,为了减弱形变、遮挡、模糊对表观模型的影响以更好地保持目标特征,提出一种基于部件库的特征补集的在线表观模型更新算法,根据部件变化实时反映目标/背景的变化情况.在多个具有跟踪挑战的视频序列上的实验结果表明(共12个视频序列):与现有跟踪方法相比,该算法跟踪结果的中心误差更小,成功帧数更多,能够更准确并稳定、有效地跟踪目标物体.

部件库、表观模型、特征补集、相似物体、跟踪漂移

26

TP391(计算技术、计算机技术)

国家自然科学基金61202293,U1301253;广东省科技计划2012B010100029,2014A050503057

2016-08-19(万方平台首次上网日期,不代表论文的发表时间)

共15页

2733-2747

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

26

2015,26(10)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn