期刊专题

基于聚类的直推式学习的性能分析?

引用
近年来,Twitter 搜索在社交网络领域引起越来越多学者的关注。尽管排序学习可以融合 Twitter 中丰富的特征,但是训练数据的匮乏,会降低排序学习的性能。直推式学习作为一种常用的半监督学习方法,在解决训练数据的稀少性中发挥着重要的作用。由于在直推式学习的迭代过程中会生成噪音,基于聚类的直推式学习方法被提出。在基于聚类的直推式学习方法中有两个重要的参数,分别为聚类的阈值以及聚类文档的数量。在原有工作的基础上,提出使用另外一种不同的聚类算法。大量在标准TREC数据集Tweets11上的实验表明,聚类的阈值以及聚类过程中文档数量的选择都会对模型的检索性能产生影响。另外,也分析了基于聚类的直推式学习模型的鲁棒性在不同查询集上的表现。最后,引入名为簇凝聚度的质量控制因子,提出了一种基于聚类的自适应的直推式方法来实现 Twitter 检索。实验结果表明,基于聚类的自适应学习算法具有更好的鲁棒性。

聚类、直推学习、Twitter检索、自适应、性能

TP181(自动化基础理论)

国家自然科学基金61103131,61472391;教育部留学回国人员科研启动基金;北京市自然科学基金4142050

2015-01-22(万方平台首次上网日期,不代表论文的发表时间)

共12页

2865-2876

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

2014,(12)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn