基于R-C模型的微博用户社区发现?
在微博市场营销、个性化推荐等应用中,发现兴趣和网络结构双内聚的用户社区起着至关重要的作用。现阶段,绝大多数的用户社区发现算法往往将用户联系与用户内容相隔离,从而导致其社区发现结果不够合理,而少数综合用户联系和内容的用户社区发现算法较为复杂;LCA 算法是重叠社区发现算法中算法效率较高且社区质量较好的算法,然而,其在聚类时未考虑边的真实兴趣体现。针对这些问题,构建了以关注关系为网络节点、以关注关系之间是否有共同用户为关注关系潜在的边、以关注关系所关联用户的兴趣集的交集为关注关系的兴趣特征,构建微博网络 R-C 模型,并探讨了其进行微博用户社区发现的方法,分析了该方法的复杂度。最后,以新浪微博数据集为实验,对照节点CNM算法和LCA算法,从兴趣内聚和网络结构内聚两方面进行分析,发现该方法能够发现更好的微博用户社区。
微博、社区发现、关注关系、重叠社区
TP311(计算技术、计算机技术)
国家自然科学基金71271211;北京市自然科学基金4132067;中国人民大学自然科学基金10XNI029;北京高等学校青年英才计划21147514040
2015-01-22(万方平台首次上网日期,不代表论文的发表时间)
共16页
2808-2823