一种基于动态小生境的自组织学习算法
提出了一种基于动态小生境的自组织学习算法(dynamic niche-based self-organizing learning algorithm,简称DNSLA),实现了基于0-1编码的动态学习机制.种群中的个体由被动适应转为主动学习,即通过系统的自组织学习而实现与环境的友好交互,因而具有更强健的动态环境适应能力,能够及时、准确地侦测到环境的变化并跟踪板值点在搜索空间内的运动轨迹,具有良好的可移植性和很强的泛化能力,一系列动态测试问题的对比仿真实验结果表明,该算法即使在剧烈动荡的环境中也能很好地与环境进行稳定而友好的交互学习,表现出了很强的鲁棒性,其动态搜索能力和板值点跟踪能力远优于同类搜索方法.
动态小生境、自组织学习、进化计算、动态环境
22
TPI81
安徽省教育厅重大项目基金ZD200904
2011-12-19(万方平台首次上网日期,不代表论文的发表时间)
共11页
1738-1748