期刊专题

命题线性时序逻辑的对偶模型问题的复杂性

引用
定义了一个命题线性时序逻辑的对偶模型的概念.一个公式f的对偶模型是指f的满足以下条件的两个模型(即状态的w序列):在每个位置上这两个模型对原子命题的赋值都是对偶的.然后,对于确定一个公式f是否有对偶模型的判定问题(记为DM)和在一个Kripke-结构中确定是否存在从两个给定状态出发的对偶模型满足给定公式f的判定问题(记为KDM)的复杂性进行了研究.证明了以下结果:对于只含有F("Future")算子的命题线性时序逻辑,DM和KDM都是NP完全的;而对于以下命题线性时序逻辑,DM和KDM都是PSPACE完全的:含有F,X ("Next")算子的逻辑、含有U("Until")算子的逻辑、含有U,S,X算子的逻辑以及由Wolper给出的含有正规语言算子的逻辑(一般称为扩展时序逻辑,简称ETL).

命题线性时序逻辑、对偶模型、计算复杂性

18

TP301(计算技术、计算机技术)

国家自然科学基金60223005;60573012;国家重点基础研究发展计划973计划2002cb312200

2007-08-06(万方平台首次上网日期,不代表论文的发表时间)

共9页

1573-1581

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

18

2007,18(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn