时态数据挖掘的相似性发现技术
现实世界存在着大量的时态数据,时态数据挖掘(temporal data mining,简称TDM)是近年来学术界关注的一个重要研究课题.相似性发现技术关注数据的发展变化,试图从时态数据中发现事物动态演化的相似性规律.分析和比较了近年来TDM研究中涉及的主要相似性发现技术.首先区分定义了3类时态数据:时间序列、事件序列和交易序列;然后分类并讨论了各种与序列相关的主要方法和技术,涉及相似性度量、序列抽象表示和搜索,以及各类挖掘任务及其算法操作;最后展望进一步研究的方向.
数据挖掘、时态数据、相似性发现、时态规则
18
TP311(计算技术、计算机技术)
国家自然科学基金60173058;70372024
2007-04-02(万方平台首次上网日期,不代表论文的发表时间)
共13页
246-258