期刊专题

数据流中一种快速启发式频繁模式挖掘方法

引用
在现有的数据流频繁模式挖掘算法中,批处理方法平均处理时间短,但需要积攒足够的数据,使得其实时性差且查询粒度粗;而启发式方法可以直接处理数据流,但处理速度慢.提出一种改进的字典树结构--IL-TREE(improved lexicographic tree),并在其基础上提出一种新的启发式算法FPIL-Stream(frequent pattem mining based on improved lexicographic tree),在更新模式和生成新模式的过程中,可以快速定位历史模式.算法结合了倾斜窗口策略,可以详细记录历史信息.该算法在及时处理数据流的前提下,也降低了数据的平均处理时间,并且提供了更细的查询粒度.

数据挖掘、数据流、频繁模式、倾斜窗口

16

TP311(计算技术、计算机技术)

中国科学院资助项目60473073;60573090;60503036

2006-01-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

2099-2105

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

16

2005,16(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn