高维数据流形的低维嵌入及嵌入维数研究
发现高维数据空间流形中有意义的低维嵌入是一个经典难题.Isomap是提出的一种有效的基于流形理论的非线性降维方法,它不仅能够揭示高维观察数据的内在结构,还能够发现潜在的低维参教空间.Isomap的理论基础是假设在高维数据空间和低维参数空间存在等距映射,但并没有进行证明.首先给出了高维数据的连续流形和低维参数空间之间的等距映射存在性证明,然后区分了嵌入空间维数、高维数据空间的固有维数和流形维数,并证明存在环状流形高维数据空间的参数空间维数小于嵌入空间维数.最后提出一种环状流形的发现算法,判断高维数据空间是否存在环状流形,进而估计其固有维教及潜在空间维数.在多姿态三维对象的实验中证明了算法的有效性,并得到正确的低维参数空间.
Isomap、环状流形、等距映射、嵌入维数
16
TP391(计算技术、计算机技术)
国家自然科学基金60373029
2005-09-22(万方平台首次上网日期,不代表论文的发表时间)
共8页
1423-1430