具有高可理解性的二分决策树生成算法研究
二分离散化是决策树生成中处理连续属性最常用的方法,对于连续属性较多的问题,生成的决策树庞大,知识表示难以理解.针对两类分类问题,提出一种基于属性变换的多区间离散化方法--RCAT,该方法首先将连续属性转化为某类别的概率属性,此概率属性的二分法结果对应于原连续属性的多区间划分,然后对这些区间的边缘进行优化,获得原连续属性的信息熵增益,最后采用悲观剪枝与无损合并剪枝技术对RCAT决策树进行简化.对多个领域的数据集进行实验,结果表明:对比二分离散化,RCAT算法的执行效率高,生成的决策树在保持分类精度的同时,树的规模小,可理解性强.
机器学习、二分决策树、信息熵增益、剪枝、RCAT算法
14
TP18(自动化基础理论)
国家自然科学基金69825104
2004-03-12(万方平台首次上网日期,不代表论文的发表时间)
共10页
1996-2005