期刊专题

序贯最小优化的改进算法

引用
序贯最小优化(sequential minimal optimization,简称SMO)算法是目前解决大量数据下支持向量机(support vector machine,简称SVM)训练问题的一种十分有效的方法,但是确定工作集的可行方向策略会降低缓存的效率.给出了SMO的一种可行方向法的解释,进而提出了一种收益代价平衡的工作集选择方法,综合考虑与工作集相关的目标函数的下降量和计算代价,以提高缓存的效率.实验结果表明,该方法可以提高SMO算法的性能,缩短SVM分类器的训练时间,特别适用于样本较多、支持向量较多、非有界支持向量较多的情况.

机器学习、支持向量机、序贯最小优化、缓存

14

TP181(自动化基础理论)

国家自然科学基金60135010;国家重点基础研究发展计划973计划G1998030509

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

918-924

暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

14

2003,14(5)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn