期刊专题

基于关联规则的Web文档聚类算法

引用
Web文档聚类可以有效地压缩搜索空间,加快检索速度,提高查询精度.提出了一种Web文档的聚类算法.该算法首先采用向量空间模型VSM(vector space model)表示主题,根据主题表示文档;再以文档为事务,以主题为事务项,将文档和主题间的关系看作事务的形式,采用关联规则挖掘算法发现主题频集,相应的文档集即为初步文档类;然后依据类间距离和类内连接强度阈值合并、拆分类,最终实现文档聚类.实验结果表明,该算法是有效的,能处理文档类间固有的重叠情况,具有一定的实用价值.

文档聚类、关联规则、Web挖掘、WWW

13

TP311(计算技术、计算机技术)

国家自然科学基金60173058;国家高技术研究发展计划863计划863-306-QN2000-5

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

417-423

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

13

2002,13(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn