期刊专题

KDD中规则提取的收敛网络方法及其应用

引用
提出一种新的基于神经网络的规则提取方法.提出的网络由一个主网络及其映射网络组成,具有二次收敛过程.通过主网络的学习(第1次收敛)完成知识学习和网络构造,在此基础上构造了其网络映射,通过该映射网络的收敛过程实现规则的提取.该方法在规则提取时无须遍历解空间,从而很好地提高了搜索效率,降低了计算复杂度.同时,还提出估计规则数下限的信度差方法.模拟实验和应用实验也验证了所提出方法的有效性和正确性.

KDD(knowledge、discovery、and、data、mining)、规则提取、神经网络、收敛网络、信度差

11

TP18(自动化基础理论)

中国科学院资助项目69835001

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共7页

1635-1641

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

11

2000,11(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn