期刊专题

基于em算法且能以概率1全局收敛的混合学习算法

引用
文章指出了随机神经网络em学习算法仍然存在着收敛于局部极小值之缺陷.针对三层随机感知机,文章将em学习算法与Solis和Wets的随机优化算法结合起来,提出了三层随机感知机的混合型新学习算法HRem.文章从理论的角度证明了混合型新学习算法HRem能以概率1全局收敛于随机感知机的基于Kullback-Leibler差异度量的最小值.这一理论结果对em学习算法的深入研究有重要意义.

随机神经网络、em学习算法、随机优化算法

9

TP18(自动化基础理论)

中国科学院资助项目;江苏省新世纪学科带头人培养基金

2004-01-08(万方平台首次上网日期,不代表论文的发表时间)

共1页

0

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

9

1998,9(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn