期刊专题

10.7519/j.issn.1000-0526.2015.01.012

KNN数据挖掘算法在北京地区霾等级预报中的应用

引用
利用北京地区2013年气象数据以及PM2.5浓度数据与能见度数据进行对比分析,结果发现气温、气压、相对湿度、露点温度、地面U风、地面V风以及P M2.5小时浓度这7个要素是影响北京地区霾等级的关键因素。利用气温、地面气压、相对湿度、露点温度、U风、V风分量以及PM2.5浓度作为7个属性特征,以霾等级做为标志量构建训练样本集,结合KNN(K-Nearest Neighbor)数据挖掘算法构建霾等级预报分类器,并开展霾等级客观识别实验。结果表明K=3时该分类器的分类预报效果最佳,其13个站点的分类准确率高达88.2%。基于该算法构建的KNN模型预报无霾时的漏报概率很小,准确率高达91.8%;预报有轻度霾、中度霾以及重度霾时,空报的概率仅分别为4.7%、1.4%和2.6%。2014年8月29日至9月2日北京地区一次霾天气过程的预报结果表明:南郊观象台、密云和延庆3站的预报准确率分别达到74%、64%和84%,但霾等级的精度方面还有待于进一步提高。

数据挖掘、KNN、霾、预报

P456;P413(天气预报)

中央级公益性科研院所专项基金IUMKY201303PP0103;国家科技支撑计划项目2014ABC16B04;北京市科技计划项目Z131100006113013;首都蓝天行动培育专项Z141100001014013

2015-02-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

98-104

暂无封面信息
查看本期封面目录

气象

1000-0526

11-2282/P

2015,(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn