期刊专题

日气温数据缺测的插补方法试验与误差分析

引用
对缺测气象观测记录进行插补是建立连续气象数据集的基础.将孤立1日或数日缺测资料进行插补的线性回归模型法应用于连续缺测数月的逐日最高、最低和平均气温的插补,并进行了一系列改进,包括:(1)用滑动选优法确定邻近参考气象站站数和数据样本时间窗的最佳值;(2)在记录缺测站与邻近参考站之间建立逐日气温的线性回归模型,并选取以最小绝对误差(Least Absolute Deviation,LAD)为目标函数求取模型参数的方法,取代以最小均方根误差为目标函数的最小二乘法(Least Squares Estimate,LAD)求解模型参数的方法,可提高计算效率和参数的稳定性;(3)进一步提出将LAD法与DeGaetano标准化序列法插补结果平均的综合插补方法,以减少极端误差.通过对湖北蔡甸气象站1961-2006年插补试验表明:(1)以4个邻近站和年数为8年、日数为15天时间窗的样本资料建模进行插补误差达到最小;(2)逐日最高、最低和平均气温的平均绝对误差分别为0.32℃、0.45℃、0.28℃,误差在±0.8℃以内的频次分别占总数的94.1%、84.8%、96.1%,观测值与插补值月相关系数在0.886以上.插补与观测资料平均值和相关系数分别通过了显著水平为0.05和0.01的检验.

记录缺测、逐日气温、插补、线性回归模型、最小绝对误差

34

P46;P42

中国气象局气象新技术推广重点项目CMATG2006Z03;武汉区域气象中心重点项目QY-Z-200701、QY-Z-200708;国家科技基础条件平台工作项目2005DKA31700

2008-09-10(万方平台首次上网日期,不代表论文的发表时间)

共9页

83-91

暂无封面信息
查看本期封面目录

气象

1000-0526

11-2282/P

34

2008,34(7)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn