期刊专题

10.3878/j.issn.1006-9585.2021.20141

基于深度学习的全球平均表面温度年际信号时间序列的预测

引用
利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)有效地分解了全球平均表面温度(Global Mean Surface Temperature,GMST)时间序列,得到其不同尺度的、不同特征的子序列(Intrinsic Mode Function,IMF).在此基础上,利用在预测长期、复杂、非线性变化的时间序列上具有显著优势的滑动自回归机器学习(Autoregressive Integrated Moving Average,ARIMA)模型和长短期记忆网络(Long Short-Term Memory,LSTM)模型开展GMST年际信号预测研究.结果表明:深度学习模型LSTM能很好地拟合并预测了长程相关性强的子序列(第2~6个IMF),而代表GMST年际尺度变化的IMF1则在一定程度上受到太平洋大西洋多重气候信号的影响和调制,因此进一步将3个气候指数作为预报前兆因子加入预测模型来更准确地预测IMF1的时间演变.通过利用多套GMST数据的对比,最终选定了考虑实时ENSO信息的LSTM(ENSO)模型来提前预测年际GMST信号,并预测2020年将有较大概率会成为史上最热的年份之一.

全球平均表面温度;年际信号时间序列预测;集合经验模态分解;长短期记忆神经网络;深度学习预测模型

27

P466(气候学)

国家自然科学基金41876012、41861144015

2022-02-24(万方平台首次上网日期,不代表论文的发表时间)

共11页

94-104

暂无封面信息
查看本期封面目录

气候与环境研究

1006-9585

11-3693/P

27

2022,27(1)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn