10.16511/j.cnki.qhdxxb.2018.25.006
基于泛化空间正则自动编码器的遥感图像识别
为了解决遥感图像中的合成孔径雷达(synthetic aperture radar,SAR)图像的样本稀缺问题,该文提出了针对这一小样本问题的泛化空间和泛化样本理论,将机器学习的分类问题转化为泛化空间中的样本密度估计问题.首先,通过研究泛化空间方法,针对有限样本的识别分类问题建立了样本密度估计模型,并从理论上验证了泛化空间方法的可行性;其次,在正则化自动编码器模型中,加入了泛化规则作为新的正则化因子对图像重构误差进行约束,针对有限样本问题建立泛化正则自动编码器(generalized autoencoders,GAE),并提出利用该算法进行图像识别的模型;最后,将该模型应用于遥感图像小样本目标识别问题中.实验结果表明:GAE在SAR图像中具有最优的小样本学习能力,在样本数量有限的情况下,该方法表现出最小的重构误差和测试错误率.在小样本输入情况下,GAE模型实现了对MSTAR图像以及船舶SAR图像的识别分类,进一步证明了该算法相比于同类算法在SAR图像小样本识别问题中更具有优势.
泛化空间、正则化自动编码器(GAE)、合成孔径雷达(SAR)、有限样本、无监督学习
58
TP753;TP391.4(遥感技术)
2018-04-08(万方平台首次上网日期,不代表论文的发表时间)
共9页
113-121