期刊专题

利用图像特性的模糊聚类图像检索方法

引用
在图像的检索方法中,大多数均根据图像的变换域的特征进行检索,其缺点是没有抓住图像的现实属性,从而检索效率低下,检索精度较低.针对此问题,该文根据内容(形状、颜色、纹理等)的视觉特性的不同,结合局部和全局特征,提出一种基于聚类形状的图像检索方法.首先将对象形状包含图像通过Fourier变换的方法进行描述,其次应用双向经验模式分解检测图像边缘,最后应用模糊聚类检索方式进行图像语义类别检索.其中所采用的模糊聚类算法采用机构监督机制,从而使形状识别类别用一组标记形状代表.根据导出的形状原型检索类似形状.相比于现有的检索方法,对比结果显示该方法在检索精度方面有了显著的改善.

模糊聚类、形状特性、图像检索、边缘检测

54

TP391.4(计算技术、计算机技术)

国家自然科学基金61173181

2015-01-26(万方平台首次上网日期,不代表论文的发表时间)

929-934

相关文献
评论
暂无封面信息
查看本期封面目录

清华大学学报(自然科学版)

1000-0054

11-2223/N

54

2014,54(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn