基于极化散射参数与Fisher-OPCE的监督目标分类
该文提出了基于Fisher准则相对最优极化(Fisher-OPCE)的监督极化SAR图像的分类方法。首先,结合广义相对最优极化的思想,利用3个反映目标极化散射特性的参数对Fisher-OPCE进行了改进。以改进的模型为基础,提出了一种类似单边二叉树的分类方法,以保证功率差别较大的两类地物的错分现象尽量小;其次利用极化参数组合的系数对分类结果进行了优化。利用NASA/JPL的AIRSAR系统对美国旧金山地区的实际观测数据进行分类,结果表明用此方法可以清晰的显示出分类地物的纹理信息,每类目标的散射特性保持一致,实验结果验证了该方法的有效性。
极化SAR、Fisher准则、相对最优极化(OPCE)、监督分类
51
TN958
国家自然科学基金40871157
2012-06-01(万方平台首次上网日期,不代表论文的发表时间)
1782-1786