期刊专题

基于二元背景模型的新词发现

引用
该文提出一种基于二元背景模型的新词发现方法。采用前、背景语料二元似然比挑选候选二元组(bigram);然后根据频率、刚性、条件概率等基于前景语料的统计量,对二元组进行进一步筛选和扩展,以确定新词边界。用该方法提取出的词既包含新词特征,又可以成词。而且该方法充分利用现有背景生语料却无需分词等标注信息,不依赖词典、分词模型和规则,具有良好的扩展性。为了得到更好的发现效果,还讨论了各统计量阈值的选取策略和垃圾元素剔除策略。该方法在网络小说语料上验证了其有效性。

新词发现、二元组、背景模型、似然比

51

TP391(计算技术、计算机技术)

2012-04-21(万方平台首次上网日期,不代表论文的发表时间)

1317-1320

暂无封面信息
查看本期封面目录

清华大学学报(自然科学版)

1000-0054

11-2223/N

51

2011,51(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn