期刊专题

基于Viterbi解码的中文合成音库韵律短语边界自动标注

引用
该文提出了一种基于Viterbi解码的中文合成音库韵律短语边界自动标注方法,以降低大语料库单元拼接合成系统的构建成本。该方法分为模型训练和韵律标注两阶段:模型训练阶段得到频谱、基频和音素时长的上下文相关隐Markov模型(hidden Markov model,HMM);标注阶段借助训练得到的模型采用Viterbi解码完成韵律短语自动标注。实验结果表明:该方法进行韵律短语边界标注时的F-score值达到77.64%,超过了人工标注时不同标注人员之间的一致性水平;另外该方法可以方便地增加待标注韵律属性,具有良好的扩展性。

语音合成、自动韵律标注、Viterbi解码、上下文相关隐Markov模型

51

TN912.33

国家自然科学基金60905010

2012-04-21(万方平台首次上网日期,不代表论文的发表时间)

1276-1281

暂无封面信息
查看本期封面目录

清华大学学报(自然科学版)

1000-0054

11-2223/N

51

2011,51(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn