期刊专题

基于HMM-BIC的说话人日志系统

引用
该文提出一种改进的基于隐Markov模型(HMM)和Bayes信息准则(BIC)的说话人日志系统。它用来检测会议语音数据中"谁在什么时候说话"。在对说话人模型进行Gauss混合模型(GMM)建模的时候,考虑到用来建模的数据通常会比较短,首先训练一个通用背景模型,然后用最大后验概率(MAP)准则得到相应片段的模型。在NIST 2004年举办的说话人日志评测任务数据集RT-04S上的实验结果表明:该系统与国际主流系统相比有一定的优势。

说话人日志、最大后验概率、隐Markov模型、Bayes信息准则

51

TP391.42;TP181(计算技术、计算机技术)

国家科技支撑计划;国家自然科学基金

2012-04-21(万方平台首次上网日期,不代表论文的发表时间)

1267-1270,1275

暂无封面信息
查看本期封面目录

清华大学学报(自然科学版)

1000-0054

11-2223/N

51

2011,51(9)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn