期刊专题

基于支持向量机与多观测复合特征矢量的语音端点检测

引用
该文提出了一种新的多观测复合特征(MO-CF)用于基于支持向量机(SVM)的语音端点检测(VAD)。该特征是由2个子特征经平衡因子加权构成。特征的优化目标是寻找能使VAD的性能曲线下面积(AUC)最大化的平衡因子,以综合各个子特征的优点。在子特征选择方面,要求各个子特征不仅本身具有较好的性能,而且存在互补性。针对该要求,提出2种组合特征MO-CF1和MO-CF2。由多观测信噪比(MO-SNR)特征与多观测最大概率(MO-MP)特征复合而成的MO-CF2比MO-CF1更稳健。实验结果表明:在多种噪声环境下,相比于已有的9种VAD算法,该算法具有更好的性能和更高的稳健性。

多观测复合特征矢量(MO-CF)、支持向量机(SVM)、语音端点检测(VAD)

51

TN912.3

2012-04-21(万方平台首次上网日期,不代表论文的发表时间)

1209-1214

相关文献
评论
暂无封面信息
查看本期封面目录

清华大学学报(自然科学版)

1000-0054

11-2223/N

51

2011,51(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn