期刊专题

用于统计语音合成的大尺度压缩HMM的方法

引用
统计语音合成使用隐Markov模型(HMM)作为声学特征的统计模型。提出了一种利用声学模型空间距离进行HMM的大尺度压缩的量化方法,通过对矢量量化码本进行的优选迭代步骤,减小压缩后的声道谱模型与原模型之间的声学距离,使通过量化模型合成的语音更加接近未量化模型。主观和客观测试结果显示:使用该方法进行声道谱模型的压缩,在压缩至原模型大小的0.06左右时,仍有约90%的评价得分认为合成语音的质量没有明显下降。

隐Markov模型(HMM)语音合成、HMM量化、矢量量化

51

TN912.33

国家自然科学基金;高等学校博士学科点专项科研基金

2012-04-21(万方平台首次上网日期,不代表论文的发表时间)

1196-1200

相关文献
评论
暂无封面信息
查看本期封面目录

清华大学学报(自然科学版)

1000-0054

11-2223/N

51

2011,51(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn