基于令牌桶阵列的DDoS流量过滤
为了提高分布武拒绝服务攻击(DDoS)流量过滤的性能,同时保证过滤的正确率,提出一种基于Poisson流随机分解模型的分类方法.该方法根据报文特征对流量进行分解后,基于2类流量的流速比随机判定报文的类别.设计了一个基于令牌桶阵列(TBA)的实现方案,不需要实时估计攻击流的参数,有效提高了过滤的性能.理论推导表明:Poisson流随机分解模型的理论错误率上限为最大后验概率判决法错误率上限的Z倍,TBA在过滤突发性强的攻击报文时错误率会进一步下降.实验结果表明:TBA的过滤效果和NB(naive Bayes)方法相当,过滤突发性攻击流时错误率低于NB方法.
计算机网络安全、分布式拒绝服务攻击、Poisson流分解、令牌桶阵列、Markov调制Poisson过程
51
TP393.08(计算技术、计算机技术)
基础研究项目2009CB320505
2011-06-01(万方平台首次上网日期,不代表论文的发表时间)
141-144