期刊专题

10.3321/j.issn:1000-0054.2006.04.014

基于支持向量机的分级调制识别方法

引用
目前大部分调制识别方法存在计算量过大和分类器训练困难等问题.针对这一现状,提出了一种基于支持向量机(SVM)的分级调制识别新方法.将接收信号的累积量和瞬时频率统计量作为分类特征参数,并利用支持向量机作为分类器对其进行分级调制分类.该方法相比其他非分级调制识别方法具有较低的计算复杂度和较快的分类器训练速度,并且对于载波频率偏移、相位抖动以及Gauss噪声均具有良好的鲁棒性.计算机仿真表明,针对ASK、FSK、PSK、QAM等11种数字调制信号,当噪声采用Gauss白噪声,并且信噪比≥5 dB时,正确识别率高于95%.

支持向量机、调制识别、特征提取、分类器

46

TP391.41(计算技术、计算机技术)

2006-06-05(万方平台首次上网日期,不代表论文的发表时间)

共4页

500-503

暂无封面信息
查看本期封面目录

清华大学学报(自然科学版)

1000-0054

11-2223/N

46

2006,46(4)

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn