期刊专题

10.3969/j.issn.1002-1965.2022.05.016

考虑反讽语义识别的协同双向编码舆情评论情感分析研究

引用
[研究目的]舆情评论情感分析是帮助相关部门及时掌握网民诉求、合理疏导舆情的重要抓手.为解决传统文本分析模型无法准确判别掺杂反讽语义文本的情感极性问题,设计了一种协同双向编码表征模型.[研究方法]将两个普通双向编码表征模型协同组合,分别进行反讽语义/非反讽语义、正面情感/负面情感的语义理解能力训练.然后将获取的反讽识别向量与情感识别向量通过一个额外的全连接层进行合并,构建协同双向编码表征模型.在反讽识别向量的指导下,此模型会根据评论文本的不同性质,在输出层进行不同的对应处理.[研究结论]以"望江女子溺水案"为例进行实验,结果表明:与普通双向编码表征、Text-CNN和Text-LSTM模型相比,协同双向编码表征模型的P、R、A、F1等指标均有明显提高.且在此基础上进行的LDA主题挖掘,可实现舆情评论情感极性的主题可视化,为相关部门进行舆情管控提供更加精准的决策支持.

舆情、反讽识别、协同双向编码表征、情感分析

41

TP393(计算技术、计算机技术)

2022-05-17(万方平台首次上网日期,不代表论文的发表时间)

共8页

99-105,111

相关文献
评论
暂无封面信息
查看本期封面目录

情报杂志

1002-1965

61-1167/G3

41

2022,41(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn