期刊专题

10.3969/j.issn.1002-1965.2021.03.023

基于引文全文本的医学领域突破性文献识别研究

引用
[目的/意义]从学术共同体的评论性引用视角出发,以引文全文本为基础,结合词频统计、深度学习等方法,探析引文文本中表征突破性评价的文本特征并构建自动识别模型以实现从海量文献中识别潜在突破性文献.[方法/过程]以诺贝尔生理学或医学奖获得者的关键文献以及Science十大科学突破主题的代表文献(医学领域)作为金标准突破性文献集并获取引用语句,对引用语句进行词频统计并结合人工筛选获取表征突破性评价的常用词.对引用语句进行人工标注,利用BERT、BIOBERT模型进行训练形成自动识别模型,并选择癌症领域进行实证分析.[结果/结论]结果表明,学术共同体在评价具有重大突破价值的文献时具有明显的文本特征;相较BERT模型,生物医学语言表示模型BIOBERT对突破性评价引用语句的识别能力明显增强,F1值为0.84.基于引用语句的自动识别模型能够较为精准地识别具有重要学术价值的文献并能在一定程度上实现早期识别和早期评价.

引文全文本、深度学习、突破性文献、自动识别、文本分类、文本特征

40

G353.1(情报学、情报工作)

中国医学科学院医学与健康科技创新工程基金项目"医学科技创新评价与卫生服务体系构建研究";国家科技图书文献中心专项项目"下一代开放知识服务平台关键技术优化集成与系统研发"

2021-04-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

132-138

相关文献
评论
暂无封面信息
查看本期封面目录

情报杂志

1002-1965

61-1167/G3

40

2021,40(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn