期刊专题

10.3969/j.issn.1002-1965.2015.09.030

基于LDA主题特征的微博转发预测

引用
微博转发是微博传播的重要途径,也是研究微博信息传播、舆情监控的最关键问题之一。研究用户转发行为对信息传播分析、舆情监控和热点提取有很大帮助。然而,当前对微博转发行为的研究大多是在宏观层面,为了解决微观层面预测用户转发行为问题,在分析影响用户转发的各类因素基础上,首先构建了微博特征和用户特征,然后通过将LDA抽取的微博隐含主题特征,与微博特征和用户特征相结合建立起基于主题特征的微博预测模型。实验结果验证了该模型在微博转发行为预测的有效性。

微博转发、主题特征、Latent Dirichlet Allocation

G353(情报学、情报工作)

广州市社会科学规划项目“基于物联网技术的广州智慧社区应用研究”2012QN06。

2015-10-21(万方平台首次上网日期,不代表论文的发表时间)

共5页

158-162

相关文献
评论
暂无封面信息
查看本期封面目录

情报杂志

1002-1965

61-1167/G3

2015,(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn